Fourier Analysis

Review.
(Is perimetric inequality)
The 1. Let Γ be a c^{1} simple closed curve in \mathbb{R}^{2}.

Set $A=\operatorname{area}(\Omega), l=$ length of Γ.
Then

$$
A \leqslant \quad l^{2} / 4 \pi
$$

and " $=$ " holds if and only if Γ is a circle.

Pf. By a suitable scaling, we may assume $l=2 \pi$.
Parametrize Γ by its arclength, say,

$$
\begin{aligned}
& \gamma(t)=(x(t), y(t)), \quad 0 \leqslant t \leqslant 2 \pi, \\
& x^{\prime}(t)^{2}+y^{\prime}(t)^{2}=1
\end{aligned}
$$

Using the Green Thy, we have

$$
A=\oint_{\Gamma} x d y=\int_{0}^{2 \pi} x(t) y^{\prime}(t) d t
$$

We need to show that $A \leqslant \pi$ and " ${ }^{=}$" holds if Γ is a circle.

It is equivalent to show that

$$
\int_{0}^{2 \pi} x(t) y^{\prime}(t) d t \leqslant \pi \quad \text { and }{ }^{\prime \prime}=" \text { hotds iff } \Gamma \text { is a circle. }
$$

For this purpose, we expand $x(t), y(t)$ into their Founder Series on $[0,2 \pi]$

$$
x(t)=\sum_{n=-\infty}^{\infty} a_{n} e^{i n t}, y(t)=\sum_{n=-\infty}^{\infty} b_{n} e^{i n t}
$$

(the above Fomiers converge because $x(t), y(t)$ are diff.)

$$
\begin{aligned}
& x^{\prime}(t) \sim \sum_{n=-\infty}^{\infty} \text { in } a_{n} e^{i n t}, \quad y^{\prime}(t) \sim \sum \text { in } b_{n} e^{i n t} . \\
& \quad\left(\hat{f}^{\prime}(n)=\operatorname{in} \hat{f}_{(n)}\right)
\end{aligned}
$$

By Parseval identity

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{0}^{2 \pi} x^{\prime}(t)^{2} d t=\sum_{n=-\infty}^{\infty}\left|i n a_{n}\right|^{2}=\sum_{n=-\infty}^{\infty} n^{2}\left|a_{n}\right|^{2} . \\
& \frac{1}{2 \pi} \int_{0}^{2 \pi} y^{\prime}(t)^{2} d t=\sum_{n=-\infty}^{\infty} n^{2}\left|b_{n}\right|^{2} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
1=\frac{1}{2 \pi} \int_{0}^{2 \pi} x^{\prime}(t)^{2}+y^{\prime}(t)^{2} d t=\sum_{n=-\infty}^{\infty} n^{2}\left(\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}\right) \tag{*}
\end{equation*}
$$

Also by the generalized Parseval identity,

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} x(t) y^{\prime}(t) d t & =\frac{1}{2 \pi} \int_{0}^{2 \pi} x(t) \overline{y^{\prime}(t)} d t \\
& =\left\langle x(t), y^{\prime}(t)\right\rangle \\
& =\sum_{n=-\infty}^{\infty} \widehat{x}(n) \cdot \overline{y^{\prime}(n)} \\
& =\sum_{n=-\infty}^{\infty} a_{n} \overline{i n b_{n}} \\
& =\sum_{n=-\infty}^{\infty}-i n a_{n} \overline{b_{n}}
\end{aligned}
$$

Hence $A=\int_{0}^{2 \pi} x(t) y^{\prime}(t) d t=2 \pi \cdot \sum_{n=-\infty}^{\infty}\left(-i n a_{n} \overline{b_{n}}\right)$.

So

$$
\begin{aligned}
A & =2 \pi\left|\sum_{n=-\infty}^{\infty}\left(-i n a_{n} \overline{b_{n}}\right)\right| \\
& \leqslant 2 \pi \sum_{n=-\infty}^{\infty}|n|\left|a_{n}\right|\left|b_{n}\right| \\
& \leqslant 2 \pi \sum_{n=-\infty}^{\infty}|n| \frac{\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}}{2} \\
& \leqslant 2 \pi \cdot \sum_{n=-\infty}^{\infty}|n|^{2} \frac{\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}}{2} \\
& =\pi \quad\left(b_{y}(*)\right) .
\end{aligned}
$$

This proves the iso perimetric inequality.

Next assume that $A=\pi$.
Clearly we have
(1) $\quad\left|a_{n}\right|=\left|b_{n}\right|$ for all $n \neq 0$.

$$
\text { (since } \ln \left|\left|a_{n}\right|\right| b_{n}|=\ln |\left(\frac{\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}}{2}\right)
$$

(2) $\left|a_{n}\right|=\left|b_{n}\right|=0$ for all $|n|>1$.

$$
\left(\text { since }|n| \cdot \frac{\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}}{2}=|n|^{2} \cdot \frac{\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}}{2}\right)
$$

Hence $x(t)=a_{-1} e^{-i t}+a_{0}+a_{1} e^{i t}$,

$$
y(t)=b_{-1} e^{-i t}+b_{0}+b_{1} e^{i t}
$$

Since $x(t), y(t)$ are real,

$$
a_{0} \in \mathbb{R}, \quad a_{-1}=\overline{a_{1}}, \quad b_{-1}=\overline{b_{1}}, \quad b_{0} \in \mathbb{R}
$$

(check $\quad a_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} x(t) d t \in \mathbb{R}$.

$$
\begin{aligned}
a_{-1}=\frac{1}{2 \pi} \int_{0}^{2 \pi} x(t) e^{i t} d t & =\overline{\frac{1}{2 \pi} \int_{0}^{2 \pi} x(t) e^{-i t} d t} \\
& =\overline{a_{1}}
\end{aligned}
$$

Hence $\quad\left|a_{1}\right|=\left|a_{-1}\right|=\left|b_{1}\right|=\left|b_{-1}\right|$

Recall $1=\sum_{n=-\infty}^{\infty} n^{2}\left(\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}\right) . \quad($ by (*) $)$

$$
=\left|a_{1}\right|^{2}+\left|b_{1}\right|^{2}+\left|a_{-1}\right|^{2}+\left|b_{-1}\right|^{2}
$$

It follows that $\quad\left|a_{1}\right|=\left|b_{1}\right|=\left|a_{-1}\right|=\left|b_{-1}\right|=\frac{1}{2}$

Now we see that

$$
a_{1}=\frac{1}{2} e^{i \alpha}, \quad b_{1}=\frac{1}{2} e^{i \beta}
$$

for some $\alpha, \beta \in[0,2 \pi)$.

Then

$$
\begin{aligned}
x(t) & =\bar{a}_{1} e^{-i t}+a_{0}+a_{1} e^{i t} \\
& =a_{0}+\frac{1}{2} e^{-i(\alpha+t)}+\frac{1}{2} e^{i(\alpha+t)} \\
& =a_{0}+\cos (\alpha+t) \\
y(t) & =b_{0}+\cos (\beta+t)
\end{aligned}
$$

Recall that

$$
\begin{aligned}
\pi=A & =2 \pi \sum_{n=-\infty}^{\infty}\left(-i n a_{n} \bar{b}_{n}\right) \\
& =2 \pi\left(-i a_{1} \bar{b}_{1}+i a_{-1} \overline{b_{-1}}\right) \\
& =2 \pi(-i)\left(\frac{1}{4} e^{i(\alpha-\beta)}-\frac{1}{4} e^{i(\beta-\alpha)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =2 \pi(-i) \cdot \frac{1}{4} \cdot(2 i) \sin (\alpha-\beta) \\
& =\pi \sin (\alpha-\beta)
\end{aligned}
$$

Hence $\sin (\alpha-\beta)=1$. Since $\alpha, \beta \in[0,2 \pi)$, we have

$$
\alpha-\beta=\frac{\pi}{2} \text { or } \quad-\frac{3 \pi}{2} .
$$

So

$$
\begin{aligned}
& y(t)= b_{0}+\cos (\beta+t) \\
&= b_{0}+\cos \left(\alpha+t-\frac{\pi}{2}\right) \\
& \quad\left(\operatorname{cor} \cos \left(\alpha+t+\frac{3 \pi}{2}\right)\right) \\
&= b_{0}+\sin (\alpha+t) \\
& \text { Recall } \quad x(t)=a_{0}+\cos (\alpha+t) .
\end{aligned}
$$

Hence $\left(x(t)-a_{0}\right)^{2}+\left(y(t)-b_{0}\right)^{2}=1$.
So $[$ is a unit circle.
§4.3 Weyl's equidistribution Theorem.

Def. A sequence of numbers $\left(x_{n}\right)_{n=1}^{\infty} \subset[0,1)$ is said to be equidistributed in $[0,1)$ if for all $(a, b) \in[0,1)$, we have
(1) $\lim _{N \rightarrow \infty} \frac{1}{N} \cdot \#\left\{1 \leqslant n \leqslant N: \quad x_{n} \in(a, b)\right\}=b-a$.

Remark: the above limit is the proportion of $\left(x_{n}\right)$
lying (a, b).

Example 1. Consider (X_{n}) given by

$$
0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, \cdots
$$

Take $(a, b)=\left(\frac{1}{3}, \frac{3}{8}\right)$.
But $x_{n} \notin(a, b)$, so

$$
\begin{aligned}
\lim _{N \rightarrow \infty} \frac{1}{N} \#\left\{1 \leqslant n \leqslant N: \quad x_{n} \in(a, b)\right\} & =0 \\
& \neq b-a
\end{aligned}
$$

So we conclude $\left(X_{n}\right)$ is not equidistributed in $[0,1)$.

The 2. (Weyl) Let γ be an irrational number, $\gamma>0$.
Then the sequence

$$
(\{n \gamma\})_{n=1}^{\infty}
$$

is equidistributed in $[0,1)$.
Here $\{n \gamma\}$ denotes the fractional part of $n \gamma$.
(e.g if $x=2.345 \cdots$, then $\{x\}=.345 \cdots$)

Remark: Kronecker proved that

$$
(\{n \gamma\})_{n=1}^{\infty}
$$

is dense in $[0,1)$ if γ is irrational.

- For $(a, b) \subset[0,1)$, let us define $X_{(a, b)}:[0,1) \rightarrow \mathbb{R}$ by

$$
X_{(a, b)}(x)= \begin{cases}1 & \text { if } \quad x \in(a, b) \\ 0 & \text { otherwise }\end{cases}
$$

$X_{(a, b)}$ is called the characteristic function of (a, b).

Then it is direct to check

$$
\begin{aligned}
& \#\left\{1 \leqslant n \leqslant N: x_{n} \in(a, b)\right\} \\
= & \sum_{n=1}^{N} X_{(a, b)}\left(x_{n}\right)
\end{aligned}
$$

In this way, we see that (1) is equivalent to
(2) $\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} X_{(a, b)}\left(x_{n}\right)=b-a$.
for all $(a, b) \subset[0,1)$

To prove the theorem of Weyl, it is enough to show that for any irrational number γ,

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} X_{(a, b)}(\{n \gamma\})=b-a, \quad \forall(a, b) \subset[0,1) .
$$

We call extend $X_{(a, b)}$ to be a 1 -periodic function on \mathbb{R} Then, we can write

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} X_{(a, b)}(n \gamma)=b-a, \quad \forall(a, b) \subset(0,1)
$$

