Fourier Analysis Feb 26, 2024
Review
(Isoperimetric inequality)
Thm 1. Let
$$\Gamma$$
 be a C⁴ simple closed curve in \mathbb{R}^{2} .
Set $A = \operatorname{ares}(a)$, $\mathcal{L} = \operatorname{length} oS \Gamma$.
Then $A \leq \frac{2^{2}}{4\pi}$
and "=" holds if and only if Γ is a circle.
Pf. By a suitable scaling, we may assume $\mathcal{L} = 2\pi$.
Parametrize Γ by its arclength, Say,
 $Y(t) = (X(t), Y(t)), o \leq t \leq 2\pi$,
 $X'(t)^{2} + Y'(t)^{2} = 1$
Using the Green Thm, we have
 $A = \int_{\Gamma}^{2\pi} X dy = \int_{0}^{2\pi} X(t) Y'(t) dt$

We need to show that
$$A \leq \pi$$
 and "=" holds iff Γ is
a circle.
It is equivalent to show that
$$\int_{0}^{2\pi} X(t) Y'(t) dt \leq \pi \quad and "=" holds iff Γ is a circle.
For this purpose, we expand $X(t)$, $Y(t)$ into their former
Series on $[0, 2\pi]$
 $X(t) = \sum_{n=-\infty}^{\infty} Q_n e^{int}, \quad Y(t) = \sum_{n=-\infty}^{\infty} b_n e^{int}.$
(the above formiers converge because $X(t)$, $Y(t)$ are diff.)
 $X'(t) \sim \sum_{n=-\infty}^{\infty} in Q_n e^{int}, \quad Y'(t) \sim \Sigma$ in $bn e^{int}$
($f'(n) = in f(n)$)
By Parseval identity
 $\frac{1}{2\pi} \int_{0}^{2\pi} X'(t)^2 dt = \sum_{n=-\infty}^{\infty} |in Q_n|^2 = \sum_{n=-\infty}^{\infty} n^2 |Q_n|^2.$$$

Hence

$$I = \frac{1}{2\pi} \int_{0}^{2\pi} x'(t)^{2} + y'(t)^{2} dt = \sum_{n=-\infty}^{\infty} n^{2} \left(|a_{n}|^{2} + |b_{n}|^{2} \right)$$
(*)
Also by the generalized Parseual identity,

$$\frac{1}{2\pi} \int_{0}^{2\pi} x(t) y'(t) dt = \frac{1}{2\pi} \int_{0}^{2\pi} x(t) \overline{y'(t)} dt$$

$$= \langle x(t), y'(t) \rangle$$

$$= \sum_{n=-\infty}^{\infty} \langle x_{(n)} \rangle \cdot \overline{y'(n)}$$

$$= \sum_{n=-\infty}^{\infty} \langle x_{(n)} \rangle \cdot \overline{y'(n)}$$

$$= \sum_{n=-\infty}^{\infty} \langle a_{n} - in \langle a_{n} \rangle b_{n}$$
Hence $A = \int_{0}^{2\pi} x(t) y'(t) dt = 2\pi$. $\sum_{n=-\infty}^{\infty} (-in \langle a_{n} \rangle b_{n})$.
So $A = 2\pi | \sum_{n=-\infty}^{\infty} (-in \langle a_{n} \rangle b_{n}) |$

$$\leq 2\pi \sum_{n=-\infty}^{\infty} |n| |a_{n}| |b_{n}|$$

$$\leq 2\pi \sum_{n=-\infty}^{\infty} |n| \frac{|a_{n}|^{2} + |b_{n}|^{2}}{2}$$

$$\leq 2\pi \cdot \sum_{n=-\infty}^{\infty} |n|^{2} \frac{|a_{n}|^{2} + |b_{n}|^{2}}{2}$$
This proves the isoperimetric inequality.

Next assume that
$$A = \pi$$
.
Clearly we have
($a_n|=|b_n|$ for all $n\neq o$.
($since |n| |a_n||b_n| = |n| \left(|a_n|^2 + |b_n|^2 \right)$
($since |n| \cdot |a_n|^2 + |b_n|^2 = |n|^2 \cdot \frac{|a_n|^2 + |b_n|^2}{2}$)
Hence $\chi(t) = a_{-1}e^{-it} + a_o + a_ie^{it}$.
 $\chi(t) = b_{-1}e^{-it} + b_o + b_ie^{it}$.
Since $\chi(t)$, $\chi(t)$ are real.,
 $a_o \in R$, $a_{-1} = \overline{a_1}$, $b_{-1} = \overline{b_1}$, $b_o \in R$.
(check $a_o = \frac{1}{2\pi} \int_{0}^{2\pi} \chi(t) dt \in \mathbb{R}$.
 $a_{-1} = \frac{1}{2\pi} \int_{0}^{2\pi} \chi(t) e^{it} dt = \frac{1}{2\pi} \int_{0}^{2\pi} \chi(t) e^{-it} dt$
 $= \overline{a_1}$)
Hence $|a_1| = |a_{-1}| = |b_1| = |b_{-1}|$

$$= 2\pi (-i) \cdot \frac{1}{4} \cdot (2i) \sin (d-\beta)$$

$$= \pi \sin (d-\beta)$$
Hence $\sin (d-\beta)=1$. Since $d, \beta \in [0, 2\pi)$, we have $d-\beta = \frac{\pi}{2}$ or $-\frac{3\pi}{2}$.
So $y(t) = b_0 + \cos (\beta + t)$
 $= b_0 + \cos (d+t-\frac{\pi}{2})$
 $(ar \cos (d+t+\frac{3\pi}{2}))$
 $= b_0 + \sin (d+t)$
Hence $(X(t)-a_0)^2 + (y(t)-b_0)^2 = 1$.
So $[\pi is a unit circle. @$

\$4.3 Weyl's equidistribution Theorem.
Def. A sequence of numbers
$$(x_n)_{n=1}^{\infty} \in [0,1]$$
 is said to
be equidistributed in $[0,1]$ if for all
 $(a,b) \in [0,1]$, we have
(1) $\left[\lim_{N \to 0} \frac{1}{N} + \# \left\{ 1 \le n \le N : -x_n \in (a,b) \right\} = b - a.$
Note $N \to 0$
Remark: the above limit is the Proportion of (x_n)
 $1y_i r_3^2 - (a,b)$.
Example 1. Consider (x_n) given by
 $0, \frac{1}{2}, 0, \frac{1}{2}, 0, \frac{1}{2}, \cdots$
Take $(a,b) = (\frac{1}{3}, \frac{3}{8})$.
But $x_n \notin (a,b)$, so
 $\lim_{N \to \infty} \frac{1}{N} + \# \left\{ i \le n \le N : -x_n \in (a,b) \right\} = 0$
 $\lim_{N \to \infty} \frac{1}{N} + \# \left\{ i \le n \le N : -x_n \in (a,b) \right\} = 0$
 $\lim_{N \to \infty} \frac{1}{N} + \# \left\{ i \le n \le N : -x_n \in (a,b) \right\} = 0$
 $\lim_{N \to \infty} \frac{1}{N} + \# \left\{ i \le n \le N : -x_n \in (a,b) \right\} = 0$
 $\lim_{N \to \infty} \frac{1}{N} + \# \left\{ i \le n \le N : -x_n \in (a,b) \right\} = 0$
 $\lim_{N \to \infty} \frac{1}{N} + \lim_{N \to \infty} \frac{$

$$\frac{\text{Thm 2. (Weyl)} \text{ Let } \text{ be an invertional number, } \text{ } \text{ > 0.}$$

$$\text{Then the sequence} \\ \left(\left\{n\vartheta\right\}\right)_{n=1}^{\infty} \\ \text{ is equidistributed in [0,1].}$$

$$\text{Here } \left\{n\vartheta\right\} \text{ denotes the fractional part of } n\vartheta.$$

$$\left(e.g.if \quad X=2.345\cdots, \text{ then } \left\{x\}\right\}=.345\cdots\right)$$

$$\text{Remark: Kronecker proved that} \\ \left(\left\{n\vartheta\right\}\right)_{n=1}^{\infty} \\ \text{ is dense in } [0,1] \text{ if } \text{ } \text{ is irrational }.$$

$$\text{For } (a,b) \in [0,1], \text{ let us define } \mathcal{X}_{(a,b)}: [0,1] \rightarrow \mathbb{R} \text{ by}$$

$$\mathcal{X}_{(a,b)}(x) = \begin{cases} 1 & \text{if } x \in (a,b) \\ 0 & \text{otherwise.} \end{cases}$$

$$\mathcal{Y}_{(a,b)} \text{ is called the characterisfic function of } (a,b).$$